Cambridge O Level Mathematics (Syllabus D)
Syllabus code 4024
For examination in June and November 2011

Cambridge O Level Mathematics (Syllabus D)
For Centres in Mauritius
Syllabus code 4029
For examination in November 2011

Note for Exams Officers: Before making Final Entries, please check availability of the codes for the components and options in the E3 booklet (titled "Procedures for the Submission of Entries") relevant to the exam session. Please note that component and option codes are subject to change.

Contents

Cambridge O Level Mathematics (Syllabus D) Syllabus codes 4024/4029

1. Introduction 2
1.1 Why choose Cambridge?1.2 Why choose Cambridge O Level Mathematics?1.3 How can I find out more?
2. Assessment at a glance 4
3. Syllabus aims and assessment 6
3.1 Aims
3.2 Assessment objectives
3.3 Exam combinations
4. Syllabus content 8
5. Mathematical notation 16
6. Resource list 21

1.1 Why choose Cambridge?

University of Cambridge International Examinations (CIE) is the world's largest provider of international qualifications. Around 1.5 million students from 150 countries enter Cambridge examinations every year. What makes educators around the world choose Cambridge?

Developed for an international audience

International O Levels have been designed specially for an international audience and are sensitive to the needs of different countries. These qualifications are designed for students whose first language may not be English and this is acknowledged throughout the examination process. The curriculum also allows teaching to be placed in a localised context, making it relevant in varying regions.

Recognition

Cambridge O Levels are internationally recognised by schools, universities and employers as equivalent to UK GCSE. They are excellent preparation for A/AS Level, the Advanced International Certificate of Education (AICE), US Advanced Placement Programme and the International Baccalaureate (IB) Diploma. CIE is accredited by the UK Government regulator, the Qualifications and Curriculum Authority (QCA). Learn more at www.cie.org.uk/recognition.

Support

CIE provides a world-class support service for teachers and exams officers. We offer a wide range of teacher materials to Centres, plus teacher training (online and face-to-face) and student support materials. Exams officers can trust in reliable, efficient administration of exams entry and excellent, personal support from CIE Customer Services. Learn more at www.cie.org.uk/teachers.

Excellence in education

Cambridge qualifications develop successful students. They not only build understanding and knowledge required for progression, but also learning and thinking skills that help students become independent learners and equip them for life.

Not-for-profit, part of the University of Cambridge

CIE is part of Cambridge Assessment, a not-for-profit organisation and part of the University of Cambridge. The needs of teachers and learners are at the core of what we do. CIE invests constantly in improving its qualifications and services. We draw upon education research in developing our qualifications.

1.2 Why choose Cambridge O Level Mathematics?

International O Levels are established qualifications that keep pace with educational developments and trends. The International O Level curriculum places emphasis on broad and balanced study across a wide range of subject areas. The curriculum is structured so that students attain both practical skills and theoretical knowledge.

Cambridge O Level Mathematics is recognised by universities and employers throughout the world as proof of mathematical knowledge and understanding. Successful Cambridge O Level Mathematics candidates gain lifelong skills, including:

- the development of their mathematical knowledge;
- confidence by developing a feel for numbers, patterns and relationships;
- an ability to consider and solve problems and present and interpret results;
- communication and reason using mathematical concepts;
- a solid foundation for further study.

Students may also study for a Cambridge O Level in Additional Mathematics and Statistics. In addition to Cambridge O Levels, CIE also offers Cambridge IGCSE and International A \& AS Levels for further study in Mathematics as well as other maths-related subjects. See www.cie.org.uk for a full list of the qualifications you can take.

1.3 How can I find out more?

If you are already a Cambridge Centre

You can make entries for this qualification through your usual channels, e.g. your regional representative, the British Council or CIE Direct. If you have any queries, please contact us at international@cie.org.uk.

If you are not a Cambridge Centre

You can find out how your organisation can become a Cambridge Centre. Email either your local British Council representative or CIE at international@cie.org.uk. Learn more about the benefits of becoming a Cambridge Centre at www.cie.org.uk.

Cambridge O Level Mathematics (Syllabus D) Syllabus codes 4024/4029

All candidates take two papers.
Each paper may contain questions on any part of the syllabus and questions will not necessarily be restricted to a single topic.

Paper 1
Paper 1 has approximately 25 short answer questions.
Candidates should show all working in the spaces provided on the question paper. Omission of essential
working will result in loss of marks.
No calculators are allowed for this paper.
80 marks weighted at 50% of the total

Paper 2

2½ hours

Paper 2 has structured questions across two sections.
Section A (52 marks): approximately six questions. Candidates should answer all questions.
Section B (48 marks): five questions. Candidates should answer four.
Electronic calculators may be used.
Candidates should show all working in the spaces provided on the question paper. Omission of essential working will result in loss of marks.

100 marks weighted at 50% of the total
| Alterations to the syllabus content are indicated by black vertical lines on either side of the text.

Calculating aids:

Paper 1 - the use of all calculating aids is prohibited.

Paper 2 - all candidates should have a silent electronic calculator. A scientific calculator with trigonometric functions is strongly recommended.

The General Regulations concerning the use of electronic calculators are contained in the Handbook for Centres.

Unless stated otherwise within an individual question, three figure accuracy will be required. This means that four figure accuracy should be shown throughout the working, including cases where answers are used in subsequent parts of the question. Premature approximation will be penalised, where appropriate.

In Paper 2, candidates with suitable calculators are encouraged to use the value of π from their calculators. The value of π will be given as 3.142 to 3 decimal places for use by other candidates. This value will be given on the front page of the question paper only.

Units

SI units will be used in questions involving mass and measures: the use of the centimetre will continue. Both the 12 -hour clock and the 24 -hour clock may be used for quoting times of the day. In the 24 -hour clock, for example, 3.15 a.m. will be denoted by $0315 ; 3.15$ p.m. by 1515 , noon by 1200 and midnight by 2400 .
Candidates will be expected to be familiar with the solidus notation for the expression of compound units, e.g. $5 \mathrm{~cm} / \mathrm{s}$ for 5 centimetres per second, $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ for 13.6 grams per cubic centimetre.

Mathematical Instruments

Apart from the usual mathematical instruments, candidates may use flexicurves in this examination.
Mathematical Notation
Attention is drawn to the list of mathematical notation at the end of this booklet.

The syllabus demands understanding of basic mathematical concepts and their applications, together with an ability to show this by clear expression and careful reasoning.

In the examination, importance will be attached to skills in algebraic manipulation and to numerical accuracy in calculations.

3.1 Aims

The course should enable students to:

- increase intellectual curiosity, develop mathematical language as a means of communication and investigation and explore mathematical ways of reasoning;
- acquire and apply skills and knowledge relating to number, measure and space in mathematical situations that they will meet in life;
- acquire a foundation appropriate to a further study of Mathematics and skills and knowledge pertinent to other disciplines;
- appreciate the pattern, structure and power of Mathematics and derive satisfaction, enjoyment and confidence from the understanding of concepts and the mastery of skills.

3.2 Assessment objectives

The examination tests the ability of candidates to:

1. recognise the appropriate mathematical procedures for a given situation;
2. perform calculations by suitable methods, with and without a calculating aid;
3. use the common systems of units;
4. estimate, approximate and use appropriate degrees of accuracy;
5. interpret, use and present information in written, graphical, diagrammatic and tabular forms;
6. use geometrical instruments;
7. recognise and apply spatial relationships in two and three dimensions;
8. recognise patterns and structures in a variety of situations and form and justify generalisations;
9. understand and use mathematical language and symbols and present mathematical arguments in a logical and clear fashion;
10. apply and interpret Mathematics in a variety of situations, including daily life;
11. formulate problems into mathematical terms, select, apply and communicate appropriate techniques of solution and interpret the solutions in terms of the problems.
12. Syllabus aims and assessment

3.3 Exam combinations

Candidates can combine syllabus 4024 in an exam session with any other CIE syllabus, except:

- syllabuses with the same title at the same level
- 0580 Mathematics
- 0581 Mathematics (with Coursework)
- 4021 Mathematics A (Mauritius)
- 4026 Mathematics E (Brunei)
- 4029 Mathematics (Syllabus D) (Mauritius)

Candidates can combine syllabus 4029 in an exam session with any other CIE syllabus, except:

- syllabuses with the same title at the same level
- 0580 Mathematics
- 0581 Mathematics (with Coursework)
- 4021 Mathematics A (Mauritius)
- 4024 Mathematics (Syllabus D)

Please note that Cambridge O Level, IGCSE and Cambridge International Level 1/Level 2 Certificate syllabuses are at the same level.

4. Syllabus content

Theme or topic	Subject content
1. Number	Candidates should be able to: - use natural numbers, integers (positive, negative and zero), prime numbers, common factors and common multiples, rational and irrational numbers, real numbers; - continue given number sequences, recognise patterns within and across different sequences and generalise to simple algebraic statements (including expressions for the nth term) relating to such sequences.
2. Set language and notation	- use set language and set notation, and Venn diagrams, to describe sets and represent relationships between sets as follows: Definition of sets, e.g. $A=\{x: x$ is a natural number $\}$ $B=\{(x, y): y=m x+c\}$ $C=\{x: a \leqslant x \leqslant b\}$ $D=\{a, b, c \ldots\}$ Notation:
3. Function notation	- use function notation, e.g. $\mathrm{f}(x)=3 x-5$, f: $x \mapsto 3 x-5$ to describe simple functions, and the notation $f^{-1}(x)=\frac{x+5}{3}$ and $f^{-1}: x \mapsto \frac{x+5}{3}$ to describe their inverses.
4. Squares, square roots, cubes and cube roots	- calculate squares, square roots, cubes and cube roots of numbers.

5. Directed numbers	- use directed numbers in practical situations (e.g. temperature change, tide levels).
6. Vulgar and decimal fractions and percentages	- use the language and notation of simple vulgar and decimal fractions and percentages in appropriate contexts; - recognise equivalence and convert between these forms.
7. Ordering	- order quantities by magnitude and demonstrate familiarity with the symbols $\left.==_{1} \neq\right\rangle_{1},<, \geqslant, \leqslant .$
8. Standard form	- use the standard form $A \times 10^{n}$ where n is a positive or negative integer, and $1 \leqslant A<10$.
9. The four operations	- use the four operations for calculations with whole numbers, decimal fractions and vulgar (and mixed) fractions, including correct ordering of operations and use of brackets.
10. Estimation	- make estimates of numbers, quantities and lengths, give approximations to specified numbers of significant figures and decimal places and round off answers to reasonable accuracy in the context of a given problem.
11. Limits of accuracy	- give appropriate upper and lower bounds for data given to a specified accuracy (e.g. measured lengths); - obtain appropriate upper and lower bounds to solutions of simple problems (e.g. the calculation of the perimeter or the area of a rectangle) given data to a specified accuracy.
12. Ratio, proportion, rate	- demonstrate an understanding of the elementary ideas and notation of ratio, direct and inverse proportion and common measures of rate; - divide a quantity in a given ratio; - use scales in practical situations, calculate average speed; - express direct and inverse variation in algebraic terms and use this form of expression to find unknown quantities.
13. Percentages	- calculate a given percentage of a quantity; - express one quantity as a percentage of another, calculate percentage increase or decrease; - carry out calculations involving reverse percentages, e.g. finding the cost price given the selling price and the percentage profit.

4. Syllabus content

14. Use of an electronic calculator	- use an electronic calculator efficiently; - apply appropriate checks of accuracy.
15. Measures	- use current units of mass, length, area, volume and capacity in practical situations and express quantities in terms of larger or smaller units.
16. Time	- calculate times in terms of the 12 -hour and 24 -hour clock; - read clocks, dials and timetables.
17. Money	- solve problems involving money and convert from one currency to another.
18. Personal and household finance	- use given data to solve problems on personal and household finance involving earnings, simple interest, discount, profit and loss; - extract data from tables and charts.
19. Graphs in practical situations	- demonstrate familiarity with cartesian coordinates in two dimensions; - interpret and use graphs in practical situations including travel graphs and conversion graphs; - draw graphs from given data; - apply the idea of rate of change to easy kinematics involving distance-time and speed-time graphs, acceleration and retardation; - calculate distance travelled as area under a linear speed-time graph.
20. Graphs of functions	- construct tables of values and draw graphs for functions of the form $y=a x^{n}$ where $n=-2,-1,0,1,2,3$, and simple sums of not more than three of these and for functions of the form $y=k a^{x}$ where a is a positive integer; - interpret graphs of linear, quadratic, reciprocal and exponential functions; - find the gradient of a straight line graph; - solve equations approximately by graphical methods; - estimate gradients of curves by drawing tangents.
21. Straight line graphs	- calculate the gradient of a straight line from the coordinates of two points on it; - interpret and obtain the equation of a straight line graph in the form $y=m x+c ;$ - calculate the length and the coordinates of the midpoint of a line segment from the coordinates of its end points.

4. Syllabus content

22. Algebraic representation and formulae	- use letters to express generalised numbers and express basic arithmetic processes algebraically, substitute numbers for words and letters in formulae; - transform simple and more complicated formulae; - construct equations from given situations.
23. Algebraic manipulation	- manipulate directed numbers; - use brackets and extract common factors; - expand products of algebraic expressions; - factorise expressions of the form $\begin{aligned} & a x+a y \\ & a x+b x+k a y+k b y \\ & a^{2} x^{2}-b^{2} y^{2} \\ & a^{2}+2 a b+b^{2} \\ & a x^{2}+b x+c \end{aligned}$ - manipulate simple algebraic fractions.
24. Indices	- use and interpret positive, negative, zero and fractional indices.
25. Solutions of equations and inequalities	- solve simple linear equations in one unknown; - solve fractional equations with numerical and linear algebraic denominators; - solve simultaneous linear equations in two unknowns; - solve quadratic equations by factorisation and either by use of the formula or by completing the square; - solve simple linear inequalities.
26. Graphical representation of inequalities	- represent linear inequalities in one or two variables graphically. (Linear Programming problems are not included.)

27. Geometrical terms and relationships	- use and interpret the geometrical terms: point, line, plane, parallel, perpendicular, right angle, acute, obtuse and reflex angles, interior and exterior angles, regular and irregular polygons, pentagons, hexagons, octagons, decagons; - use and interpret vocabulary of triangles, circles, special quadrilaterals; - solve problems and give simple explanations involving similarity and congruence; - use and interpret vocabulary of simple solid figures: cube, cuboid, prism, cylinder, pyramid, cone, sphere; - use the relationships between areas of similar triangles, with corresponding results for similar figures, and extension to volumes of similar solids.
28. Geometrical constructions	- measure lines and angles; - construct simple geometrical figures from given data, angle bisectors and perpendicular bisectors using protractors or set squares as necessary; - read and make scale drawings. (Where it is necessary to construct a triangle given the three sides, ruler and compasses only must be used.)
29. Bearings	- interpret and use three-figure bearings measured clockwise from the north (i.e. $000^{\circ}-360^{\circ}$).
30. Symmetry	- recognise line and rotational symmetry (including order of rotational symmetry) in two dimensions, and properties of triangles, quadrilaterals and circles directly related to their symmetries; - recognise symmetry properties of the prism (including cylinder) and the pyramid (including cone); - use the following symmetry properties of circles: (a) equal chords are equidistant from the centre; (b) the perpendicular bisector of a chord passes through the centre; (c) tangents from an external point are equal in length.

31. Angle	- calculate unknown angles and give simple explanations using the following geometrical properties: (a) angles on a straight line; (b) angles at a point; (c) vertically opposite angles; (d) angles formed by parallel lines; (e) angle properties of triangles and quadrilaterals; (f) angle properties of polygons including angle sum; (g) angle in a semi-circle; (h) angle between tangent and radius of a circle; (i) angle at the centre of a circle is twice the angle at the circumference; (j) angles in the same segment are equal; (k) angles in opposite segments are supplementary.
32. Locus	- use the following loci and the method of intersecting loci: (a) sets of points in two or three dimensions (i) which are at a given distance from a given point, (ii) which are at a given distance from a given straight line, (iii) which are equidistant from two given points; (b) sets of points in two dimensions which are equidistant from two given intersecting straight lines.
33. Mensuration	- solve problems involving (i) the perimeter and area of a rectangle and triangle, (ii) the circumference and area of a circle, (iii) the area of a parallelogram and a trapezium, (iv) the surface area and volume of a cuboid, cylinder, prism, sphere, pyramid and cone (formulae will be given for the sphere, pyramid and cone), (v) arc length and sector area as fractions of the circumference and area of a circle.

4. Syllabus content

34. Trigonometry	- apply Pythagoras Theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle (angles will be quoted in, and answers required in, degrees and decimals of a degree to one decimal place); - solve trigonometrical problems in two dimensions including those involving angles of elevation and depression and bearings; - extend sine and cosine functions to angles between 90° and 180°; solve problems using the sine and cosine rules for any triangle and the formula $\frac{1}{2} a b \sin C \text { for the area of a triangle; }$ - solve simple trigonometrical problems in three dimensions. (Calculations of the angle between two planes or of the angle between a straight line and plane will not be required.)
35. Statistics	- collect, classify and tabulate statistical data; read, interpret and draw simple inferences from tables and statistical diagrams; - construct and use bar charts, pie charts, pictograms, simple frequency distributions and frequency polygons; - use frequency density to construct and read histograms with equal and unequal intervals; - calculate the mean, median and mode for individual data and distinguish between the purposes for which they are used; - construct and use cumulative frequency diagrams; estimate the median, percentiles, quartiles and interquartile range; - calculate the mean for grouped data; identify the modal class from a grouped frequency distribution.
36. Probability	- calculate the probability of a single event as either a fraction or a decimal (not a ratio); - calculate the probability of simple combined events using possibility diagrams and tree diagrams where appropriate. (In possibility diagrams outcomes will be represented by points on a grid and in tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches.)

4. Syllabus content

37. Matrices	- display information in the form of a matrix of any order; - solve problems involving the calculation of the sum and product (where appropriate) of two matrices, and interpret the results; - calculate the product of a scalar quantity and a matrix; - use the algebra of 2×2 matrices including the zero and identity 2×2 matrices; - calculate the determinant and inverse of a non-singular matrix. (\mathbf{A}^{-1} denotes the inverse of \mathbf{A}.)
38. Transformations	- use the following transformations of the plane: reflection (M), rotation (R), translation (T), enlargement (E), shear (H), stretching (S) and their combinations (If $M(a)=b$ and $R(b)=c$ the notation $R M(a)=c$ will be used; invariants under these transformations may be assumed.); - identify and give precise descriptions of transformations connecting given figures; describe transformations using coordinates and matrices. (Singular matrices are excluded.)
39. Vectors in two dimensions	- describe a translation by using a vector represented by $\binom{x}{y}, \overrightarrow{A B}$ or \mathbf{a}; - add vectors and multiply a vector by a scalar; - calculate the magnitude of a vector $\binom{x}{y}$ as $\sqrt{x^{2}+y^{2}}$. (Vectors will be printed as $\overrightarrow{A B}$ or \mathbf{a} and their magnitudes denoted by modulus signs, e.g. $\|\overrightarrow{A B}\|$ or $\|\mathbf{a}\|$. In all their answers to questions candidates are expected to indicate \mathbf{a} in some definite way, e.g. by an arrow or by underlining, thus $\overrightarrow{A B}$ or a); - represent vectors by directed line segments; use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors; use position vectors.

5. Mathematical notation

The list which follows summarises the notation used in the CIE's Mathematics examinations. Although primarily directed towards Advanced/HSC (Principal) level, the list also applies, where relevant, to examinations at O Level/S.C.

1. Set Notation

E	is an element of
\notin	is not an element of
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots
$\{x: \ldots\}$	the set of all x such that...
$\mathrm{n}(A)$	the number of elements in set A
\varnothing	the empty set
\mathscr{E}	universal set
A^{\prime}	the complement of the set A
\mathbb{N}	the set of positive integers, $\{1,2,3, \ldots\}$
\mathbb{Z}	the set of integers $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
\mathbb{Z}^{+}	the set of positive integers $\{1,2,3, \ldots\}$
\mathbb{Z}_{n}	the set of integers modulo $n,\{0,1,2, \ldots, n-1\}$
\mathbb{Q}	the set of rational numbers
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \in \mathbb{Q}$: $x>0\}$
\mathbb{Q}_{0}^{+}	the set of positive rational numbers and zero, $\{x \in \mathbb{Q}$: $x \geqslant 0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers $\{x \in \mathbb{R}: x>0\}$
\mathbb{R}_{0}^{+}	the set of positive real numbers and zero $\{x \in \mathbb{R}$: $x \geqslant 0\}$
\mathbb{R}^{n}	the real n tuples
\mathbb{C}	the set of complex numbers
\subseteq	is a subset of
\subset	is a proper subset of
\nsubseteq	is not a subset of
$\not \subset$	is not a proper subset of
\cup	union
\bigcirc	intersection
$[a, b]$	the closed interval $\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$
$[a, b)$	the interval $\{x \in \mathbb{R}: a \leqslant x<b\}$
$(a, b]$	the interval $\{x \in \mathbb{R}: a<x \leqslant b\}$
(a, b)	the open interval $\{x \in \mathbb{R}: a<x<b\}$
$y R x$	y is related to x by the relation R
$y \sim x$	y is equivalent to x, in the context of some equivalence relation

5. Mathematical notation

2. Miscellaneous Symbols

$=$
\neq
\equiv
\approx
\cong
\propto
$<; \ll$
\leqslant, \ngtr
$>; \gg$
\geqslant, \Varangle
∞
is equal to
is not equal to
is identical to or is congruent to
is approximately equal to
is isomorphic to
is proportional to
is less than, is much less than
is less than or equal to, is not greater than
is greater than, is much greater than
is greater than or equal to, is not less than
infinity

3. Operations

$a+b$
$a-b$
$a \times b, a b, a . b$
$a \div b, \frac{a}{b}, a / b$
$a: b$
$\sum_{i=1}^{n} a_{i}$
$\sqrt{ } a$
$|a|$
$n!$
$\binom{n}{r}$
a plus b
a minus b
a multiplied by b
a divided by b
the ratio of a to b
$a_{1}+a_{2}+\ldots+a_{n}$
the positive square root of the real number a
the modulus of the real number a
n factorial for $n \in \mathbb{N}(0!=1)$
the binomial coefficient $\frac{n!}{r!(n-r)!}$, for $n, r \in \mathbb{N}, 0 \leqslant r \leqslant n$

$$
\frac{n(n-1) \ldots(n-r+1)}{r!}, \text { for } n \in \mathbb{Q}, r \in \mathbb{N}
$$

5. Mathematical notation

4. Functions

f
$\mathrm{f}(x)$
$\mathrm{f}: A \rightarrow B$
$\mathrm{f}: x \mapsto y$
f^{-1}
$g \circ f, g f$
$\lim _{x \rightarrow a} \mathrm{f}(x)$
$\Delta x ; \delta x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$
$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x), \ldots, \mathrm{f}^{(n)}(x)$
$\int y \mathrm{~d} x$
$\int_{a}^{b} y \mathrm{~d} x$
$\frac{\partial y}{\partial x}$
$\dot{x}, \ddot{x}, \ldots$
function f
the value of the function f at x
f is a function under which each element of set A has an image in set B
the function f maps the element x to the element y the inverse of the function f
the composite function of f and g which is defined by
$(\mathrm{g} \circ \mathrm{f})(x)$ or $\mathrm{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
the limit of $\mathrm{f}(x)$ as x tends to a
an increment of x
the derivative of y with respect to x
the nth derivative of y with respect to x
the first, second, \ldots, nth derivatives of $\mathrm{f}(x)$ with respect to x
indefinite integral of y with respect to x
the definite integral of y with respect to x for values of x between a and b
the partial derivative of y with respect to x
the first, second, \ldots derivatives of x with respect to time

5. Exponential and Logarithmic Functions

e
$\mathrm{e}^{x}, \exp x$
$\log _{a} x$
$\ln x$
$\lg x$

6. Circular and Hyperbolic Functions and Relations

sin, cos, tan, cosec, sec, cot
$\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$, $\operatorname{cosec}^{-1}$, sec $^{-1}, \cot ^{-1}$ sinh, cosh, tanh, cosech, sech, coth $\sinh ^{-1}$, cosh $^{-1}$, tanh $^{-1}$, cosech ${ }^{-1}$, sech $^{-1}$, coth $^{-1}$
base of natural logarithms exponential function of x logarithm to the base a of x natural logarithm of x logarithm of x to base 10

5. Mathematical notation

7. Complex Numbers

8. Matrices

M

\mathbf{M}^{-1}
$\mathbf{M}^{\text {T }}$
$\operatorname{det} \mathbf{M}$

9. Vectors

a

$\overrightarrow{A B}$
â
$\mathrm{i}, \mathrm{j}, \mathrm{k}$
|a|
$|\overrightarrow{A B}|$
a.b
$\mathbf{a} \times \mathbf{b}$

10. Probability and Statistics

A, B, C etc.
$A \cup B$
$A \cap B$
$\mathrm{P}(A)$
A^{\prime}
$\mathrm{P}(A \mid B)$
X, Y, R, etc.
x, y, r, etc.
x_{1}, x_{2}, \ldots
f_{1}, f_{2}, \ldots
square root of -1
a complex number, $z=x+\mathrm{i} y$

$$
\begin{aligned}
& =r(\cos \theta+\mathrm{i} \sin \theta), r \in \mathbb{R}_{0}^{+} \\
& =r \mathrm{e}^{\mathrm{i} \theta}, r \in \mathbb{R}_{0}^{+}
\end{aligned}
$$

the real part of $z, \operatorname{Re}(x+\mathrm{i} y)=x$
the imaginary part of $z, \operatorname{Im}(x+\mathrm{i} y)=y$
the modulus of $z,|x+\mathrm{i} y|=\sqrt{ }\left(x^{2}+y^{2}\right),|r(\cos \theta+\mathrm{i} \sin \theta)|=r$
the argument of $z, \arg (r(\cos \theta+\mathrm{i} \sin \theta))=\theta,-\pi<\theta \leqslant \pi$
the complex conjugate of $z,(x+\mathrm{i} y)^{*}=x-\mathrm{i} y$

a matrix \mathbf{M}

the inverse of the square matrix \mathbf{M}
the transpose of the matrix \mathbf{M}
the determinant of the square matrix \mathbf{M}

the vector a

the vector represented in magnitude and direction by the directed line segment $A B$
a unit vector in the direction of the vector a
unit vectors in the directions of the cartesian coordinate axes
the magnitude of \mathbf{a}
the magnitude of $\overrightarrow{A B}$
the scalar product of \mathbf{a} and \mathbf{b}
the vector product of \mathbf{a} and \mathbf{b}

events

union of events A and B
intersection of the events A and B
probability of the event A
complement of the event A, the event 'not A '
probability of the event A given the event B random variables
values of the random variables X, Y, R, etc.
observations
frequencies with which the observations x_{1}, x_{2}, \ldots occur

5. Mathematical notation

$\mathrm{p}(x)$
p_{1}, p_{2}, \ldots
$\mathrm{f}(x), \mathrm{g}(x), \ldots$
$\mathrm{F}(x), \mathrm{G}(x), \ldots$
$\mathrm{E}(X)$
$\mathrm{E}[\mathrm{g}(X)]$
$\operatorname{Var}(X)$
$\mathrm{G}(t)$
$\mathrm{B}(n, p)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$
μ
σ^{2}
σ
\bar{x}
s^{2}
ϕ
Φ
ρ
$\operatorname{Cov}(X, Y)$
the value of the probability function $\mathrm{P}(X=x)$ of the discrete random variable X
probabilities of the values x_{1}, x_{2}, \ldots of the discrete random variable X
the value of the probability density function of the continuous random variable X
the value of the (cumulative) distribution function $\mathrm{P}(X \leqslant x)$ of the random variable X
expectation of the random variable X
expectation of $g(X)$
variance of the random variable X
the value of the probability generating function for a random variable which takes integer values
binomial distribution, parameters n and p
normal distribution, mean μ and variance σ^{2}
population mean
population variance
population standard deviation
sample mean
unbiased estimate of population variance from a sample,
$s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$
probability density function of the standardised normal variable with distribution $\mathrm{N}(0,1)$
corresponding cumulative distribution function linear product-moment correlation coefficient for a population linear product-moment correlation coefficient for a sample covariance of X and Y

6. Resource list

These titles represent some of the texts available in the UK at the time of printing this booklet. Teachers are encouraged to choose texts for class use which they feel will be of interest to their students and will support their own teaching style. ISBN numbers are provided wherever possible.

Bostock, L, S Chandler, A Shepherd, E Smith ST(P) Mathematics Books 1A to 5A (Stanley Thornes)

Book 1A	0748705406
Book 1B	0748701435
Book 2A	0748705422
Book 2B	0748701443
Book 3A	0748712607
Book 3B	0748705449
Book 4A	0748715010
Book 4B	0748715835
Book 5A	0748716017

Buckwell, Geoff Mastering Mathematics (Macmillan Education Ltd) 0333620496
Collins, J, Warren, T and C J Cox Steps in Understanding Mathematics (John Murray)

Book 1	0719544505
Book 2	0719544513
Book 3	0719544521
Book 4	$071954453 \times$
Book 5	0719544548

Cox, C J and D Bell Understanding Mathematics Books 1-5 (John Murray)
Book 10719547520
Book 20719547547
Book 30719547563
Book 40719550300
Book 50719550327

Farnham, Ann Mathematics in Focus (Cassell Publishers Ltd) 0304317411
Heylings, M R Graded Examples in Mathematics (8 topic books and 1 revision book)
(Schofield \& Sims)
Mathematics in Action Group Mathematics in Action Books 1, 2, 3B, 4B, 5B (Nelson Blackie)

```
Book 1 0 174314167
Book 2 0 174314205
Book 3B 0 174314345
Book 4B 0 174314388
```


6. Resource list

MSM Mathematics Group MSM Mathematics Books 1, 2, 3Y, 4Y, 5 Y (Nelson)
Murray, Les Progress in Mathematics Books 1E to 5E (Stanley Thornes)

Book 1E	0859507440
Book 2E	0859507459
Book 3E	0859507467
Book 4E	0859507475
Book 5E	0859507335

National Mathematics Project (NMP) Mathematics for Secondary Schools Red Track Books 1 to 5
(Longman Singapore Publishers Pte Ltd)

Book 10582206960
Book 20582 206987/206995
Book 30582207274
Book 40582207258
Book 50582207266

Smith, Ewart Examples in Mathematics for GCSE Higher Tier (Second edition)
(Stanley Thornes) 748727647
Smith, Mike and Ian Jones Challenging Maths for GCSE and Standard Grade (Heinemann)
SSMG/Heinemann Team Heinemann Mathematics 14-16 Upper Course (Heinemann)

University of Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom
Tel: +44 (0)1223553554 Fax: +44 (0) 1223553558
Email: international@cie.org.uk Website: www.cie.org.uk
© University of Cambridge International Examinations 2008

